Cambridge O Level

CHEMISTRY

5070/12
Paper 1 Multiple Choice
October/November 2022
1 hour
You must answer on the multiple choice answer sheet.
You will need: Multiple choice answer sheet
Soft clean eraser
Soft pencil (type B or HB is recommended)

INSTRUCTIONS

- There are forty questions on this paper. Answer all questions.
- For each question there are four possible answers A, B, C and D. Choose the one you consider correct and record your choice in soft pencil on the multiple choice answer sheet.
- Follow the instructions on the multiple choice answer sheet.
- Write in soft pencil.
- Write your name, centre number and candidate number on the multiple choice answer sheet in the spaces provided unless this has been done for you.
- Do not use correction fluid.
- Do not write on any bar codes.
- You may use a calculator.

INFORMATION

- The total mark for this paper is 40 .
- Each correct answer will score one mark.
- Any rough working should be done on this question paper.
- The Periodic Table is printed in the question paper.

1 Which piece of apparatus would be the most suitable for measuring exactly $37.00 \mathrm{~cm}^{3}$ of aqueous ammonia?

A a $50 \mathrm{~cm}^{3}$ burette
B a $50 \mathrm{~cm}^{3}$ pipette
C a $50 \mathrm{~cm}^{3}$ gas syringe
D a $50 \mathrm{~cm}^{3}$ measuring cylinder

2 When iron reacts with dilute hydrochloric acid, hydrogen is formed. Impurities in the iron mean that some hydrogen sulfide gas is also formed. Hydrogen sulfide gas is soluble in water. Water vapour can be removed from a mixture of gases using concentrated sulfuric acid.

Which diagram shows apparatus suitable to prepare a pure, dry sample of hydrogen?
A

C

3 The following tests are carried out on a sample of green crystals.
The crystals are dissolved in water and the resulting solution is divided into two portions.

- Aqueous sodium hydroxide is added to the first portion. A green precipitate, soluble in excess aqueous sodium hydroxide, is formed.

The solution formed is heated and a gas is produced which turns litmus paper blue.

- Dilute nitric acid is added to the second portion followed by aqueous barium nitrate. A white precipitate is formed.

Which three ions are present in the green crystals?
A ammonium, chromium(III), sulfate
B ammonium, iron(II), sulfate
C chromium(III), carbonate, sulfate
D iron(II), nitrate, sulfate

4 Changes of state occur between solids, liquids and gases.

$$
\text { gas } \underset{R}{\stackrel{P}{\rightleftharpoons}} \text { liquid } \underset{S}{\stackrel{Q}{\rightleftharpoons}} \text { solid }
$$

Which changes are occurring at P, Q, R and S ?

	P	Q	R	S
A	boiling	melting	freezing	condensing
B	condensing	freezing	boiling	melting
C	freezing	condensing	boiling	melting
D	melting	boiling	condensing	freezing

5 The table shows information about some oxides.

	structure	effect of water
oxide	simple molecular	dissolves to form an acid

For which of the elements nitrogen, phosphorus, sulfur and silicon could this information about their oxides be correct?

A phosphorus and sulfur only
B nitrogen and silicon only
C nitrogen, phosphorus and sulfur only
D nitrogen, phosphorus, sulfur and silicon

6 Which statement about iodine atoms and iodide ions is correct?
A They are both isotopes of iodine.
B They undergo the same chemical reactions.
C They have the same number of protons.
D They have the same physical properties.

7 The table contains information about four substances.
Which substance is an ionic compound?

	state at room temperature	conducts electricity at room temperature	conducts electricity when molten	conducts electricity when in aqueous solution
A	liquid	x	x	\checkmark
B	solid	\checkmark	\checkmark	\checkmark
C	solid	\checkmark	\checkmark	insoluble
D	solid	x	\checkmark	\checkmark

8 What is the nucleon number of the isotope of uranium, ${ }_{92}^{235} \mathrm{U}$?
A 92
B 143
C 235
D 327

9 An ionic compound has the formula $\mathrm{Al}_{2} \mathrm{O}_{3}$.
What are the charges on the ions?
A $\mathrm{Al}^{+} \mathrm{O}^{-}$
B $A l^{2+} \mathrm{O}^{2-}$
C $\mathrm{Al}^{2+} \mathrm{O}^{3-}$
D $A l^{3+} \mathrm{O}^{2-}$

10 Which two pairs of atoms are held together by the same number of bonds?

	first pair of atoms	second pair of atoms
A	the two carbon atoms in a $\mathrm{C}_{2} \mathrm{H}_{4}$ molecule	the carbon atom and one oxygen atom in a CO_{2} molecule
B	the two nitrogen atoms in an N_{2} molecule	the two hydrogen atoms in an H_{2} molecule
C	the two oxygen atoms in an O_{2} molecule the carbon atom and one hydrogen atom in a CH_{4} molecule	
D	two oxygen atoms in an O_{2} molecule	the nitrogen
atoms in an N_{2} molecule		

11 Boron trifluoride, BF_{3}, is a simple molecule. There are three covalent bonds in each BF_{3} molecule. Each of these bonds is made by sharing one electron from the boron atom and one electron from a fluorine atom.

What is unusual about the bonding in boron trifluoride?
A It is unusual for a non-metal such as fluorine to form covalent bonds.
B The boron atom in each molecule does not gain the electronic configuration of a noble gas.
C The covalent bonds do not consist of shared pairs of electrons.
D The fluorine atoms in each molecule do not gain the electronic configuration of a noble gas.

12 Which equation is correct for the reaction between carbon dioxide and magnesium hydroxide?
A $\mathrm{CO}_{2}+\mathrm{Mg}(\mathrm{OH})_{2} \rightarrow \mathrm{MgCO}_{3}+\mathrm{H}_{2} \mathrm{O}$
B $\mathrm{CO}_{2}+2 \mathrm{Mg}(\mathrm{OH})_{2} \rightarrow 2 \mathrm{MgCO}_{3}+2 \mathrm{H}_{2} \mathrm{O}$
C $2 \mathrm{CO}_{2}+\mathrm{Mg}(\mathrm{OH})_{2} \rightarrow \mathrm{MgCO}_{3}+\mathrm{H}_{2} \mathrm{O}$
D $2 \mathrm{CO}_{2}+\mathrm{Mg}(\mathrm{OH})_{2} \rightarrow 2 \mathrm{MgCO}_{3}+\mathrm{H}_{2} \mathrm{O}$

13 Which mass of oxygen gas combines with exactly 16 g of sulfur to form sulfur dioxide, SO_{2} ?
A 4 g
B 8 g
C 16 g
D 32 g

14 Which compound has an empirical formula that is different from its molecular formula?
A butanol, $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$
B hydrogen peroxide, $\mathrm{H}_{2} \mathrm{O}_{2}$
C nitrogen dioxide, NO_{2}
D water, $\mathrm{H}_{2} \mathrm{O}$
154.0 g of sodium hydroxide, NaOH , is dissolved in $250 \mathrm{~cm}^{3}$ of water in a graduated flask.

A $25 \mathrm{~cm}^{3}$ sample of this solution is titrated with $0.50 \mathrm{~mol} / \mathrm{dm}^{3}$ hydrochloric acid.
Which volume of hydrochloric acid is required to exactly neutralise the alkali?
A $10 \mathrm{~cm}^{3}$
B $20 \mathrm{~cm}^{3}$
C $40 \mathrm{~cm}^{3}$
D $200 \mathrm{~cm}^{3}$

16 Dilute aqueous solutions of potassium chloride and magnesium chloride are mixed together.
A sample of the mixture is electrolysed using inert electrodes.
What are possible products at each of the electrodes?

	anode	cathode
A	chlorine	oxygen
B	chlorine	potassium
C	oxygen	hydrogen
D	oxygen	magnesium

17 The table gives some statements about electrolysis and the reason why each statement is true.
Which row shows a correct statement and the correct reason why the statement is true?

	statement	reason		
A	Aqueous copper(II) sulfate and aqueous copper(II) nitrate are suitable electrolytes when used to copper plate objects.	Both solutions contain $\mathrm{Cu}^{2+}(\mathrm{aq})$ and can transfer copper from the anode to the cathode.		
B	During the extraction of aluminium from aluminium oxide the carbon anodes have to be replaced regularly.	The anodes gradually dissolve in the molten cryolite.		
CIn the electrolysis of concentrated aqueous sodium chloride and of dilute sulfuric acid the same products are formed.	$\mathrm{H}^{+}(\mathrm{aq})$ is present in both aqueous solutions.			
When an aqueous mixture of				
Zinc nitrate and copper(II) sulfate				
is electrolysed, zinc is formed				
on the cathode.			\quad	Zinc is more
:---:				
reactive than copper.				

18 Students proposed four cells to produce electricity in a school laboratory.
Which cell would produce the largest voltage in a safe way?
A

B

C

D

19 Nitrogen oxides may form in the atmosphere during lightning activity.

$$
\mathrm{N}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}
$$

The reaction is endothermic.
Which energy profile diagram is correct for this reaction?
A

B

C

D

20 Which two processes are both endothermic?
A combustion and cracking
B combustion and fermentation
C cracking and photosynthesis
D respiration and photosynthesis

21 Magnesium reacts with dilute sulfuric acid.

$$
\mathrm{Mg}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{MgSO}_{4}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})
$$

Which changes in the conditions will result in the lowest rate of production of hydrogen?

	acid concentration	solid particle size	temperature
A	decrease	decrease	increase
B	decrease	increase	decrease
C	increase	decrease	increase
D	increase	increase	decrease

22 Carbonates react with dilute acids to produce carbon dioxide. A student uses excess carbonate and $100 \mathrm{~cm}^{3}$ of $0.1 \mathrm{~mol} / \mathrm{dm}^{3}$ acid and measures the volume of gas produced at regular time intervals.

The results give line X on the graph. The student repeats the experiment using $50 \mathrm{~cm}^{3}$ of $0.2 \mathrm{~mol} / \mathrm{dm}^{3}$ acid whilst keeping everything else the same.

Which line shows the results for the second experiment?

23 In the Contact process, sulfur is converted into sulfuric acid. A catalyst is added to the reaction mixture shown in the equation.

$$
2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{SO}_{3}
$$

What is the purpose of the catalyst?
A to lower the activation energy for the reaction
B to oxidise the sulfur dioxide
C to reduce the sulfur dioxide
D to shift the equilibrium to the right

24 Which change involves reduction?
A calcium carbonate to calcium oxide
B copper to brass
C ethene to poly(ethene)
D sand to silicon

25 Under certain conditions, iron reacts with chlorine to form iron(III) chloride.

$$
2 \mathrm{Fe}+3 \mathrm{Cl}_{2} \rightarrow 2 \mathrm{FeCl}_{3}
$$

Which statement about this reaction is correct?
A Chlorine is the oxidising agent.
B Iron gains electrons.
C Iron is reduced.
D This is not a redox reaction.

26 The equation shows a reaction in the Contact process.

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g}) \quad \Delta H=-196 \mathrm{~kJ} / \mathrm{mol}
$$

Which change would move the position of equilibrium to the left?
A adding more O_{2}
B increasing the pressure
C increasing the temperature
D removing SO_{3} from the reacting mixture

27 The table shows the pH values of some substances that can be consumed by humans.

substance	pH value
P	6.6
Q	3.1
R	10.4
S	7.8

Which statement about these substances is correct?
A P is alkaline.
B Q has the lowest concentration of hydrogen ions.
C R can neutralise excess stomach acid.
D S has a pH value closest to neutral.

28 Solution X is added to a solid salt, causing gas Y to be evolved.
Gas Y dissolves in water resulting in a solution with a pH of less than 7.
What are the possible identities of X and Y ?

	X	Y
A	aqueous sodium hydroxide	ammonia
B	aqueous sodium hydroxide	carbon dioxide
C	dilute hydrochloric acid	ammonia
D	dilute hydrochloric acid	carbon dioxide

29 Which substance reacts with dilute sulfuric acid in the preparation of a pure sample of lead(II) sulfate?

A aqueous lead(II) nitrate
B lead foil
C powdered lead(II) carbonate
D powdered lead(II) oxide

30 A pure sample of a salt is obtained by filtration followed by evaporation of the filtrate.
Which pair of reagents would produce the salt?
A copper and hydrochloric acid
B excess copper(II) carbonate and hydrochloric acid
C aqueous silver nitrate and hydrochloric acid
D aqueous sodium hydroxide and hydrochloric acid

31 Which set of conditions is used in the Contact process?

	temperature $/{ }^{\circ} \mathrm{C}$	pressure $/ \mathrm{atm}$	catalyst
A	$100-200$	200	$\mathrm{~V}_{2} \mathrm{O}_{5}$
B	$100-200$	$1-2$	Fe
C	$400-500$	$1-2$	$\mathrm{~V}_{2} \mathrm{O}_{5}$
D	$400-500$	200	$\mathrm{~V}_{2} \mathrm{O}_{5}$

32 Part of the Periodic Table is shown.
Which substance is an unreactive gas found in the atmosphere?
A

33 Iron is obtained in the blast furnace from the ore haematite.
Which statement is correct?
A Calcium carbonate is used to remove acidic impurities.
B Coke is reduced to carbon dioxide.
C Haematite is oxidised by carbon monoxide.
D Haematite undergoes thermal decomposition.

34 Pollution may be caused by oxides of carbon, nitrogen and sulfur.
Which elements can each form more than one oxide?
A carbon, nitrogen and sulfur
B carbon and nitrogen only
C carbon and sulfur only
D nitrogen and sulfur only

35 A river runs through an area of land that is used for growing cotton. The cotton farmers applied a large amount of fertiliser to their fields. This caused eutrophication in the river water.

Which statement is correct?
A Decreased levels of mineral salts caused the eutrophication.
B Desalination of the river water occurred.
C Increased levels of phosphates caused the eutrophication.
D Oxygen levels in the river water increased.

36 Which compound is an alkane?
A $\mathrm{CH}_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{3}$
B $\mathrm{CH}_{3} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{3}$
C $\mathrm{CH}_{3} \mathrm{CHCHCH}_{3}$
D $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CCH}_{2}$

37 The equation shows the reaction that takes place when butanol is completely combusted in air.

$$
\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}(\mathrm{I})+x \mathrm{O}_{2}(\mathrm{~g}) \rightarrow y \mathrm{CO}_{2}(\mathrm{~g})+z \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

What are the values of x, y and z ?

	x	y	z
A	4	6	5
B	5	4	6
C	5	6	4
D	6	4	5

38 Propanoic acid reacts with calcium carbonate. The products of this reaction are calcium propanoate, carbon dioxide and water.

What is the equation for this reaction?
A $2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}+\mathrm{Ca}_{2} \mathrm{CO}_{3} \rightarrow 2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOCa}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
B $2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}+\mathrm{CaCO}_{3} \rightarrow\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COO}\right)_{2} \mathrm{Ca}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
C $2 \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{COOH}+\mathrm{Ca}_{2} \mathrm{CO}_{3} \rightarrow 2 \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{COOCa}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
D $2 \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{COOH}+\mathrm{CaCO}_{3} \rightarrow\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{COO}\right)_{2} \mathrm{Ca}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$

39 Which row shows all the elements present in the polymers listed?

- nylon
- poly(ethene)
- Terylene

	nylon	poly(ethene)	Terylene
A	C, H	$\mathrm{C}, \mathrm{H}, \mathrm{O}$	$\mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{O}$
B	$\mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{O}$	C, H	$\mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{O}$
C	$\mathrm{C}, \mathrm{H}, \mathrm{O}$	$\mathrm{C}, \mathrm{H}, \mathrm{N}$	$\mathrm{C}, \mathrm{H}, \mathrm{O}$
D	$\mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{O}$	C, H	$\mathrm{C}, \mathrm{H}, \mathrm{O}$

40 The partial structure of a polyamide is shown.

Which monomers would produce this polymer?

1

A 1 only
B 1 and 2

3

D 2 and 3

[^0]The Periodic Table of Elements

$\begin{gathered} 57 \\ \substack{\text { Lantanum } \\ \text { lanting } \\ 139} \end{gathered}$	$\begin{gathered} 58 \\ \begin{array}{c} \text { cerium } \\ \text { ce } \\ 140 \end{array} \end{gathered}$		$\begin{gathered} 60 \\ \mathrm{Nd} \\ \text { neodymium } \\ \text { neo } \\ \hline \end{gathered}$	$\begin{gathered} 61 \\ \begin{array}{c} 61 \\ \text { Promenthium } \end{array} \end{gathered}$	$\begin{gathered} 62 \\ \substack{\text { samatium } \\ \text { s. } \\ 150} \\ \hline 150 \end{gathered}$	$\begin{gathered} 63 \\ \begin{array}{c} \text { Eu } \\ \substack{\text { europium } \\ 152} \end{array} \end{gathered}$	$\underset{\substack{\text { gaddifium } \\ \text { gac } \\ 157}}{\text { Gd }}$	$\begin{gathered} 65 \\ \mathrm{~Tb} \\ \begin{array}{c} \text { terbium } \\ 159 \\ \hline \end{array} \\ \hline \end{gathered}$	$\begin{gathered} 66 \\ \text { Dy } \\ \text { dyspossium } \\ 163 \end{gathered}$	$\begin{gathered} 67 \\ \text { Ho } \\ \text { homium } \\ 165 \end{gathered}$		$\begin{gathered} 69 \\ \begin{array}{c} \text { thulium } \\ \text { tulum } \\ 1696 \end{array} \end{gathered}$	$\begin{gathered} 70 \\ \text { Yb } \\ \substack{\text { yterbium } \\ \text { tir }} \end{gathered}$	$\underset{\substack{\text { Luteium } \\ 175 \\ \text { Lu }}}{71}$
89	90	91	92	${ }^{93}$	94	95	96	97	${ }^{98}$	99	100	101	102	103
Ac	$\underset{\text { thtorium }}{\text { th }}$	$\underset{\text { protactinium }}{\mathrm{Pa}}$	$\underset{\text { uranum }}{\text { un }}$	$\underset{\substack{\mathrm{Ne} p \\ \text { noturum }}}{ }$	$\underset{\text { puluorium }}{\mathrm{Pu}}$	$\underset{\text { americium }}{\mathrm{Am}}$	$\underset{\text { curium }}{\mathrm{Cm}}$	$\underset{\text { benelium }}{\mathrm{BK}}$	$\underset{\text { callonium }}{\text { Cf }}$	Es	$\underset{\text { fembum }}{\text { Fm }}$	$\begin{gathered} \text { mendelevium } \end{gathered}$	$\underset{\substack{\text { nobelium }}}{\text { Noo }}$	$\underset{\text { hawencium }}{\mathrm{Lr}}$

The volume of one mole of any gas is $24 \mathrm{dm}^{3}$ at room temperature and pressure (r.t.p.).

[^0]: Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

 To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

 Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

